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Elementary arithmetic is highly prevalent in our daily lives. However, despite decades of

research, we are only beginning to understand how the brain solves simple calculations.

Here, we applied machine learning techniques to magnetoencephalography (MEG) signals

in an effort to decompose the successive processing stages and mental transformations

underlying elementary arithmetic. Adults subjects verified single-digit addition and sub-

traction problems such as 3 þ 2 ¼ 9 in which each successive symbol was presented

sequentially. MEG signals revealed a cascade of partially overlapping brain states. While

the first operand could be transiently decoded above chance level, primarily based on its

visual properties, the decoding of the second operand wasmore accurate and lasted longer.

Representational similarity analyses suggested that this decoding rested on both visual

and magnitude codes. We were also able to decode the operation type (additions vs. sub-

traction) during practically the entire trial after the presentation of the operation sign. At

the decision stage, MEG indicated a fast and highly overlapping temporal dynamics for (1)

identifying the proposed result, (2) judging whether it was correct or incorrect, and (3)

pressing the response button. Surprisingly, however, the internally computed result could

not be decoded. Our results provide a first comprehensive picture of the unfolding pro-

cessing stages underlying arithmetic calculations at a single-trial level, and suggest that

externally and internally generated neural codes may have different neural substrates.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The ability to understand the world through mathematics is a

uniquely human competence. Understanding how mathe-

matics is implemented in the brain is therefore fundamental to
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cognition. Brain-imaging evidence suggests that even

professional-level competence in mathematics is grounded in

an evolutionary ancient set of areas that, in young children and

non-human primates, is involved in simple number processing
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(Amalric & Dehaene, 2016, 2017). Elementary arithmetic thus

appears as one of the fundamental building blocks of higher

mathematics. Here, our goal is to begin to decompose the suc-

cessive processing stages and mental transformations under-

lying elementary arithmetic, using the recently emerging

technique of MEG decoding (Grootswagers, Wardle, & Carlson,

2016; King & Dehaene, 2014).

Traditionally, research in cognitive arithmetic has relied

on behavioral methods and used mental chronometry to

infer the covert processing stages of mental calculations.

Behavioral research discovered that response time (RT)

during calculation increases with the size of the operands, a

finding which has been called the “problem-size” effect and

which led to the proposal of several models of mental

arithmetic (Ashcraft & Battaglia, 1978; Butterworth, Zorzi,

Girelli, & Jonckheere, 2001; Campbell, 1994; Groen &

Parkman, 1972; Uittenhove, Thevenot, & Barrouillet, 2016;

Zbrodoff & Logan, 2005).

However, since RT is only a summary measure of the

entire processing chain, it can only provide indirect infor-

mation on the nature and relative timing of the various

stages. Recently, more direct behavioral methods, such as

continuous measures of finger pointing, have helped char-

acterized the covert processing stages of arithmetic pro-

cessing (Dotan & Dehaene, 2013, 2015; Pinheiro-Chagas,

Dotan, Piazza, & Dehaene, 2017). Pinheiro-Chagas, Dotan,

et al. (2017) monitored the finger trajectory of adult sub-

jects, while they were asked to point to the result of single-

digit calculations on a number line. Results revealed that

additions and subtractions are computed by a stepwise

displacement on the mental number line, starting with the

larger operand (max), irrespectively of its position in the

problem, and incrementally adding or subtracting the

smaller operand (min). They also found a transient effect of

the operator sign (a plus sign attracted the finger to the right

[larger results] and a minus sign to the left [smaller results])

around the time that subjects were processing the second

operand. However, while such behavioral methods can be

considerably informative about the duration and serial or-

ganization of cognitive computations, they remain limited in

capturing processes that may happen simultaneously.

To supplement behavioral research, several studies have

tried to decipher the neural code for numbers. Initial electro-

physiology findings revealed the existence of single neurons

tuned to specific numerosities in the monkey ventral intra-

parietal (VIP) and lateral prefrontal cortices (lPFC) (Nieder,

2016). These results were corroborated by human fMRI

studies that demonstrated tuning curves for numbers in the

intraparietal sulcus (IPS) (Piazza, Izard, Pinel, Le Bihan, &

Dehaene, 2004; Piazza, Pinel, Le Bihan, & Dehaene, 2007) and

a topographical organization of numerosites in the lateral

parietal cortex (Harvey, Klein, Petridou, & Dumoulin, 2013).

Machine learning was also used to successfully decode the

identity of numbers from fMRI activity in parietal cortex (Eger,

Pinel, Dehaene, & Kleinschmidt, 2015; Eger et al., 2009) How-

ever, these studies only investigated simple magnitude

perception and comparison tasks. At present, due to the dif-

ficulty of training monkeys in arithmetic tasks, electrophysi-

ological studies have not yet obtained direct information

about the neural transformations underlying mental
calculation, and fMRI measurements in humans are probably

too slow to characterize them.

Only a few studies have tried to decompose the brain states

during arithmetic processing, using a combination of mental

chronometry and time-resolved brain imaging. Dehaene

(1996) combined event relate potentials (ERPs) and the

additive-factors method (Sternberg, 1969) to parse the pro-

cessing stages involved in a number comparison (between two

visually presented stimuli). By manipulating orthogonal fea-

tures of the stimuli and the task, the author showed that the

ERPs were first modulated by notation (Arabic numerals vs.

number words, at ~110e170 ms), followed by the numerical

distance (close vs. far, at ~190e300 ms) and finally by the

lateralization of motor response (left vs. right, at

~250e400 ms). More recently, using a modified version of the

arithmetic verificationwith ERPs, Avancini, Solt�esz, and Szucs

(2015) identified a series of overlapping cognitive processes

during calculation, such as the identification of the stimuli

properties, magnitude comparison and judgment of

correctness.

Progress in understanding the spatialetemporal dynamics

of mental calculations have recently increasedwith a series of

novel electrocorticography (ECoG) findings. Using a sequen-

tially presented addition task, a recent study revealed a series

of successive brain activations: starting around ~90 msec, the

number form area (NFA, lateral ventral temporal cortex) re-

sponds to digits, irrespective of whether or not they are pre-

sented in a calculation context (Shum et al., 2013); slightly

later at ~100 msec, adjacent sites in the posterior inferior

temporal gyrus (pITG) respond to numbers only when they are

manipulated in the context of a calculation. Furthermore,

activity at those ventral calculation-selective populations

showed high correlations with activity in the vicinity of the

intraparietal sulcus (IPS), which is traditionally considered the

main number processing hub in the brain (Dehaene, Piazza,

Pinel, & Cohen, 2003). Pinheiro-Chagas, Daitch, Parvizi, and

Dehaene (2017) further determined that both regions were

affected by problem-size, though in different ways: pITG

shows a fast peak which was inversely proportional to prob-

lem size, while IPS shows a more progressive activity whose

integral is proportional to problem size. Thus, both regions

seem to be involved in magnitude processing, but these find-

ings do not resolve the nature of the underlying neural codes

for the operands, nor do they provide a comprehensive picture

of the series of unfolding computations.

In the present study, we aimed to evaluate whether mag-

netoencephalography (MEG) could resolve this issue. We

combined MEG recordings with time-resolved multivariate

pattern analysis (MVPA), specifically decoding (King &

Dehaene, 2014) and representational similarity analysis

(Kriegeskorte&Kievit, 2013), in order to characterize the series

of processing stages and mental transformations underlying

elementary arithmetic. Time-resolved decoding and MVPA

have been successfully applied to characterize several cogni-

tive functions such as working memory (King, Pescetelli, &

Dehaene, 2016; Trübutschek et al., 2017; Wolff, Jochim,

Akyürek, & Stokes, 2017) and object recognition and catego-

rization (Carlson, Hogendoorn, Kanai, Mesik, & Turret, 2011;

Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cichy, Pantazis,

& Oliva, 2014; Isik, Meyers, Leibo, & Poggio, 2014).

https://doi.org/10.1016/j.cortex.2018.07.018
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Furthermore, MVPA can then shed light on the nature of un-

derlying codes (Diedrichsen & Kriegeskorte, 2017), exceeding

the capacity of traditional ERP univariate-level analysis to

capture fine-grained representations (Pantazis et al., 2017).

In the present task, subjects were asked to verify single-

digit addition and subtraction problems, such as 3 þ 2 ¼ 5.

Each of the symbols was presented sequentially for 400 msec,

separated by 385 msec, so that we could analyze brain ac-

tivity at each step. Specifically, we aimed at answering the

following questions. First, can we decode the identity of op-

erands? If so, can we distinguish neural codes for digit

symbols and for the corresponding quantities? What is their

temporal dynamics? Is this information sustained or tran-

sient? When and for how long can we decode the operation

type? Can we then track the emergence of the internally

computed result? Can we dissect the comparison and deci-

sion processes by which subjects classify the proposed result

as correct or incorrect? Are these processes completely serial

or do they partially overlap in a form of a cascade of com-

putations that can be simultaneously decoded? Finally, are

the neural codes independent of each other, or do they

overlap? We were interested in the possibility that the neural

codes for addition versus subtraction (active just after the

presentation of the operation sign) would overlap with those

for large versus small numbers, as such an overlap would

readily explain the psychological observation that additions

induce a bias towards larger numbers and subtraction to-

wards smaller numbers (Knops, Viarouge, Dehaene, et al.,

2009; Knops, Thirion, Hubbard, Michel, & Dehaene, 2009;

McCrink, Dehaene, & Dehaene-Lambertz, 2007; Pinhas &

Fischer, 2008; Pinheiro-Chagas, Dotan, et al., 2017).
2. Methods

2.1. Protocol and experimental design

Twenty healthy adults were scanned with MEG (23 ± 2 years

old, 10 females, all right handed). Subjects had normal vision.

The experiment lasted ~45 min, for which subjects were

financially compensated. The study was approved by the local

Ethics Committee and all subjects provided written informed

consent before participation.

Subjects were asked to verify the accuracy of sequentially

presented single-digit additions and subtractions problems in

the form of A ± B ¼ C (see Fig. 1A). Each stimulus appeared for

400 msec, with an inter-stimuli interval of 385 msec. Subjects

were instructed to generate an internal estimate of the result

in advance of its appearance, and to further incite them. On

half of the trials the appearance of C was delayed for an

additional 385 msec. Inter-trial interval was 2,000 msec.

Stimuli were white with a 1.5� visual angle, presented on a

black background and projected on a screen with a refreshing

rate of 60 Hz, placed 100 cm away from subject's head. The

experiment was programmed in Python, mostly using the

PsychoPy package (Peirce, 2007).

Subjects were asked to respond as fast and as accurate as

possible if Cwas correct or incorrect, by pressing a buttonwith

their left of right thumb. In half of the blocks, left/right were

associated with correct/incorrect and then switched. The
association order was randomized across subjects. Stimuli

were composed of the 16 addition and 16 subtraction prob-

lems consisting of all combinations of the operands: A ¼ [3, 4,

5, 6] and B¼ [0, 1, 2, 3]. The correct results C ranged from 0 to 9,

in the following proportions: 0: 3.12%, 1: 6.25%, 2: 9.38%, 3:

15.62%, 4: 15.62%, 5: 15.62%, 6: 15.62%, 7: 9.38%, 8: 6.25%, 9:

3.12%. On half the trials, C was correct. On the other half, C

was ± [1, 2, 3, 4] distant from the correct result. A list of

incorrect C's was generated for each subject with the single

goal of maximizing the homogeneity of their distribution

across trials.

Each experimental block took ~4.5 min and consisted of 32

calculation trials and 8 non-calculation trials, of the form

“A ¼ ¼ ¼ C”, which are not analyzed in the current publica-

tion. Subjects completed 10 experimental blocks, comprising a

total of 320 calculation trials.

2.2. Preprocessing

MEG signals were recorded with an ElektaNeuromag® MEG

system (Helsinki, Finland), comprising 306 sensors (102 triples

of 2 orthogonal planar gradiometers and 1magnetometer) in a

helmet-shaped array. Subjects’ head position relative to the

MEG sensors was estimatedwith four head position coils (HPI)

placed on the frontal and pre-auricular areas, digitized with a

3-dimensional Fastrak system (Polhemus, USA), and triangu-

lated before each block of trials. Three pairs of electrodes

recorded electrocardiograms (EMG) as well as the horizontal

and vertical electro-oculograms (EOG). All signals were

sampled at 1 kHz. MEG signals were hardware band-pass

filtered between .1 Hz and 330 Hz, and active compensated

for external noise with Maxshield (ElektaNeuromag). After

visual inspection of bad channels, raw MEG signals were

cleaned with the signal space separation method (Taulu &

Simola, 2006) provided by MaxFilter (ElektaNeuromag) to 1.

suppress magnetic interferences and 2. interpolate bad sen-

sors. All further preprocessing steps were done with the

Matlab Fieldtrip Toolbox (Oostenveld, Fries, Maris, &

Schoffelen, 2011).

The MEG raw signals were epoched between �500 msec

and þ4,500 msec with respect to the onset of the first operand

(A, see Fig. 1A) and downsampled to 250 Hz. Trials contami-

nated by muscular or other artifact, were identified and

rejected in a semi-automated procedure that used the vari-

ance across the MEG sensors. Next, we applied independent

component analysis (ICA) to identify and remove artifacts

caused by eye blinks and heartbeats. We then visually

inspected the topographies of the first 30 components and

subtracted the contaminated components from the data.

Further preprocessing was dependent on the nature of

the analysis. For decoding and representational similarity

analysis (RSA), epochs were low-pass filtered at 30 Hz and

downsampled to 125 Hz. For time-frequency analysis, the

spectral power of the non-low-pass-filtered epochs were

estimated with parameters adapted to low and high fre-

quency ranges. For the low-frequency range (2e34 Hz, steps:

1 Hz), data segments extracted from a sliding time window

(length: 500 msec, steps: 40 msec) between 2 and 10 Hz and

with a length of 5 oscillation cycles per frequency between 10

and 34 Hz was tapered with a single Hanning window. For

https://doi.org/10.1016/j.cortex.2018.07.018
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Fig. 1 e Sustained activity and signal propagation from posterior to anterior sensors. (A) Experimental design. Subjects were

asked to verify the accuracy of sequentially presented single-digit additions and subtractions problems in the form of A ± B

¼ C, with an 785msec asynchrony. On half the trials, the presentation of C was delayed by an additional 385msec. (B) Global

Field Power (GFP), estimated using the MEG gradiometers and baseline corrected. After the onset of each stimulus event, GFP

sharply peaked and remained above baseline for the entire trial. (C) Averaged MEG gradiometers topographies calculated

between 0e200 msec and 400e600 msec after each stimulus. The signal propagates from posterior to anterior sensors after

the onset of each stimulus and overall across the entire trial.
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the high-frequency range (34e100 Hz, steps: 2 Hz), data

segments extracted from a sliding time window (length:

200 msec, steps: 40 msec) were multitapered and the fre-

quency smoothing was set to 20% of each frequency value.

Finally, epochs were cropped in three time windows: time-

locked to A (�200 msec to 3,200 msec), time-locked to

C (�200 msec to þ800 msec) and time-locked to the response

(�800 msec to þ200 msec).

2.3. Decoding

All decoding analysis were performed using the Python scikit-

learn (Pedregosa et al., 2011) and MNE (Gramfort et al., 2013)

packages. The multivariate estimators aimed at predicting a

vector of labels (y) from a matrix of features composed by

single-trial MEG amplitude signals [X, shape ¼ ntrials �
(nsensors � 1time sample)]. Decoding analyses systematically con-

sisted of the following steps: (1) fitting a linear estimator to a

training subset of X (Xtrain); (2) predicting an estimate of y on a

separate test set (ŷtest); (3) assessing the decoding score of

these predictions as compared to the true value of y. This

procedure was repeated for each time sample separately.

First, we used a standard transformation to z-scores in each

channel at each time point across trials, in order to concom-

itantly include all 306 MEG sensors, pooling over magnetom-

eters and gradiometers. Next, we fitted the data with a linear

model to find the hyperplane thatmaximally predicts y fromX

while minimizing the loss function. Three main estimators
were used: linear support vector machine (SVM) classifier,

logistic regression classifier and Ridge regression, using the

default parameters of the scikit-learn (e.g., lambda ¼ 1). For

multiclass problems using SVM, a ‘one-versus-one’ decision

function was used. All decoding analyses were performed

within subject and across trials, with an 8-fold stratified

folding cross-validation scheme to maximize the homogene-

ity of distribution across training and testing sets. Decoding

scores (y,ŷ) were quantified using the average classification

accuracy for SVM and the Kendall's tau for Ridge regression.

Statistical analyses were based on second-level tests across

subjects. More specifically, we tested whether the classifica-

tion scores were higher than theoretical chance value or 0, for

classification accuracy and Kendall's tau, respectively, using

one-sample t-test with random-effect Monte-Carlo cluster

statistics for multiple comparison correction (Maris and

Oostenveld, 2007), using the default parameters of the MNE

spatio_temporal_cluster_1samp_test function.

As a note, we acknowledge that for the classification

analysis, the most recommended approach is to use empirical

chance level, estimated by running several iterations with

labels shuffling. However, in the present case, this procedure

would be prohibitively expensive in terms of computation

time, given that in our time-resolved decoding approach, an

independent classifier is trained at each time point. And our

epochs have 4.8 sec, that is, 600 time points when down-

sampled to 125 Hz. Crucially, we have no reason to expect that

empirical chance would greatly deviate from theoretical

https://doi.org/10.1016/j.cortex.2018.07.018
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chance in our dataset, because all classes were fully balanced

in all decoding analysis. This was done by randomly selecting

a subsample of trials from the labels withmore trials tomatch

the one with fewer trials. We only needed to exclude a

maximum of 4 trials per subject in each decoding analysis.

Furthermore, we did not perform any baseline correction in

the data, therefore the baseline period is meaningful. As can

be seen in Fig. 1, there was no single time point at which the

decoding accuracy was significantly higher than theoretical

chance level during the baseline period or during the period in

which the information to be decoded was unavailable to the

subjects. Therefore, we are confident that our results do not

originate from false positives.

2.4. Temporal generalization

We also tested if each estimator fitted across trials at time t

could accurately predict the ŷ value at time t’, therefore

probingwhether the coding pattern is similar between t and t’.

We applied this systematically across all pairs of time sam-

ples, resulting in a temporal generalization matrix (King &

Dehaene, 2014).

2.5. Riemannian geometry

Finally, we applied an estimator based on Riemannian geome-

try, using a covariance matrix estimation that integrates the

temporal information, using the open source tools developed by
Fig. 2 e Decoding the time course of the processing stages unde

to classify the different features at each time sample, using the s

to three windows of interest: after the onset of the operand 1 (A

theoretical chance level. Operand 1, operand 2, result and prop

level¼ 25%) and operation, correctness and response side involv

lines and filled areas represent time periods in which the secon

classification accuracy significantly above chance (cluster corre
Jean-R�emi King and Alexandre Barachant (https://github.com/

kingjr/jr-tools, https://github.com/Team-BK/Biomag2016). More

specifically, the model relies on the tangent space mapping of

the covariance matrix described in (Barachant, Bonnet,

Congedo, & Jutten, 2013). We started by decomposing the low-

pass filtered data with a Principal Component Analysis (PCA)

and taking the first 70 components for dimensionality reduc-

tion. Next, we used the ERPCov model (Barachant & Congedo,

2014), which is useful to capture both evoked and task

induced responses, since it embeds the temporal information of

the signal by concatenating, along the sensor axis, the averaged

ERF (across trial) of each class before estimating the spatial

covariancematrix. Finally, wemapped the covariancematrix to

the tangent space and fitted a SVM or logistic regression clas-

sifier with our standard cross-validation scheme. The use of

Riemannian geometry has been shown to increase perfor-

mances in sensorimotor rhythm (SMR)-based brain-computer

interface (BCI) and more recently in MEG decoding of cognitive

features (Biomag 2016 Decoding Competition).

2.6. Representational similarity analysis (RSA)

Several RSA models were constructed to test specific re-

lationships between different dimensions of the stimuli and

the MEG signals (Cichy et al., 2014; Diedrichsen &

Kriegeskorte, 2017; Kriegeskorte & Kievit, 2013). RSA ana-

lyses systematically consisted of (1) averaging conditions

across trials; (2) pair-wise correlating the conditions across
rlying calculation. A series of SVM estimators were applied

ignal amplitude of all MEG sensors. Trials were time-locked

), proposed result (C) and RT. Gray horizontal lines indicate

osed result involved 4 classes each (theoretical chance

ed binary classifiers (theoretical chance level¼ 50%.). Thick

d-level statistical tests across subjects revealed a

cted for multiple comparisons, p < .05).
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https://github.com/kingjr/jr-tools
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Fig. 3 e Cross-decoding from operation to operands. A logistic regression classifier was used to decode subtractions vs.

additions and then tested if it could generalize to respectively smaller vs. larger numbers for both operand 1 (in which 3 & 4

received the same label as subtraction and 5& 6 as addition) and operand 2 (in which 0& 1 e subtraction and 2& 3 addition).

The time window used was between 0 and 700 msec, locked to each stimulus. (A) Top squared plots show the

generalization across time matrices, with only classification accuracies significantly above chance (p < .05, uncorrected).

Bottom plots show the diagonal of the upper matrices, where train and test times were the same. Gray horizontal lines

indicate theoretical chance level (.5). Thick lines and filled areas represent time periods with classification accuracy

significantly above chance (cluster corrected for multiple comparisons, p < .05). (B) Boxplots represent classification scores

across subjects (individual dots) for the ERPCov model, which integrates the information over 0e700 msec (* ¼ p < .01,

second-level 1-sampled t-test).
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the MEG sensors at each time point; (3) creating a symmetric

dissimilarity matrix, equal to 1eSpearman's rank correlation

coefficient; (4) correlating the observed matrix with the theo-

retical similarity matrices predicted by different types of

neural codes for the stimuli (see below). This procedure was

repeated for each time sample separately. From the z-scored

data, 32 � 32 representational dissimilarity matrices (RDM)

were constructed using the 32 additions and subtraction

problems, sorted by first operand, then by operation (addi-

tions first) and finally by second operand (3 þ 0, 3 þ 1, 3 þ 2,

3 þ 3, 3�0, 3�1, 3�2, 3�3, etc.). Seven theoretical RDM were

constructed with the same structure and based on the

magnitude dissimilarity (numerical distance) or visual

dissimilarity (see method below) of operand 1, operand 2 and

correct result and based on category for addition vs. sub-

tractions (see Fig. 4). Visual dissimilarity matrices were

calculated using the Gabor Filterbank method, as imple-

mented in the Matlab Image Similarity Toolbox (https://

github.com/daseibert/image_similarity_toolbox).

This method projects the image onto a Gabor wavelet pyr-

amid as amodel for primary visual cortex, simplified from (Kay,

Naselaris, Prenger, & Gallant, 2008). The filters span eight ori-

entations (multiples of .125p), four sizes (with the central edge

covering 100%, 33%, 11%, and 3.7% of the image), and X, Y po-

sitions across the image (such that filters tile the space for each

filter size). The resulting vector of filter responses are then

compared between images, using the Euclidean distance. The

method replicates the dissimilarity matrix of neural responses
of the inferior temporal cortex (IT) in both humans and mon-

keys (Kriegeskorte et al., 2008) (Readme File of the toolbox).

We then used Spearman's rank correlation test to evaluate

the relationship between the observed and theoretical

matrices. All RSA analyses were first computed within each

subject, then statistical analyses were based on second-level

tests across subjects, using the same method as in the

decoding analysis, to test if the correlation coefficient was

higher than 0.
3. Results

Twenty healthy adults were asked to verify the accuracy of

successively presented single-digit additions and subtractions

problems with matched operands in the form of A ± B ¼ C,

where in half of the trials C was incorrect (see Fig. 1A and

Methods). Accuracy was very high (average ¼ 98.8%). Reaction

time was faster for correct as compared to incorrect proposed

results [meancorrect ¼ 519 msec, SDcorrect ¼ 117 msec,

meanincorrect ¼ 622 msec, SDincorrect ¼ 134 msec, F(1,

19) ¼ 68.796, p ¼ .013; h2 ¼ .149]. Within the trials with an

incorrect result, no distance effect was found across the four

absolute distances between the proposed and the correct re-

sults [mean1 ¼ 630 msec, SD1 ¼ 145 msec, mean2 ¼ 616 msec,

SD2 ¼ 130 msec, mean3 ¼ 628 msec, SD3 ¼ 136 msec,

mean4 ¼ 615 msec, SD4 ¼ 141 msec, F(3, 57) ¼ .781, p ¼ .508;

h2 ¼ .002]. And no significant difference was observed when

https://github.com/daseibert/image_similarity_toolbox
https://github.com/daseibert/image_similarity_toolbox
https://doi.org/10.1016/j.cortex.2018.07.018
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Fig. 4 e Theoretical predictors of dissimilarity matrices. Dissimilarity matrices were calculated using all 32 additions and

subtraction problems, sorted by operand 1, then by operation (additions first) and finally by operand 2: (3 þ 0, 3 þ 1, 3 þ 2,

3 þ 3, 3¡0, 3¡1, 3¡2, 3¡3, etc., see Fig. A2). Visual models were calculated using a method that rates the similarity of the

digits based on their putative responses in inferior temporal cortex. Magnitude models used the numerical distance

between numbers. For the operation, the matrix was composed by 0s (same operation) and 1s (different operations).
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combining the trials in which parity was violated (distance 1 or

3) and those in which it was preserved (distance 2 or 4) [t

(19) ¼ .437, p ¼ .662, Cohen's d ¼ .097]. Finally, we also did not

observe a problem-size effect, considering both operand 1 (max)

(b ¼ 4.919 msec; p ¼ .69) and operand 2 (min) (b ¼ �3.249 msec;

p ¼ .797). This is expected, since calculation was probably

performed between the onset of operand 2 and the equal sign,

therefore subjects most likely already had the correct result in

mind when the proposed result was presented.

3.1. Sustained activity across the entire trial

In order to investigate weather overall activity was transient or

sustained across the entire trial, we calculated the Global Field

Power (GFP) (Lehmann & Skrandies, 1980), for the MEG gradi-

ometers sensors and then normalized with the reference of a

baseline period of �200 msec from the onset of operand 1. As

can be seen from Fig. 1B, GFP increases right after (~100 msec)

the presentation of each event and then slowly decreased until

the presentation of the next event, but without returning to

baseline, thus confirming that the overall activitywas sustained

across the entire trial. The evoked brain activity evolved across

time from more anterior sensors in the first 200 msec after the

stimuli onset to more posterior sensors in the following period

of 400e600 msec. Qualitative exploration showed that the sec-

ond operand produced a higher and wider occipital-parietal-

frontal activation as compared to the first operand, in both

early and later timewindows (Fig. 1C). Therefore, this sustained

activity allows us to investigate in more detail the mental

transformations occurring during the entire trial.

3.2. Decoding the processing stages of mental arithmetic

We next investigated whether we could decode the series of

processing stages underlying mental calculation, from the

perception and representation of the operands to the opera-

tion type and response selection. For this purpose, we cropped

the epochs in three different time windows: time-locked to

operand 1 (�200 msec to 3,200 msec), time-locked to C

(�200 msec to þ800 msec) and time-locked to the RT

(�800 msec to þ200 msec). For each time window, we used

seven different classifiers (SVM, see Methods) to decode

operand 1 [values: 3, 4, 5, 6], operation [additions, sub-

tractions], operand 2 [0, 1, 2, 3], correct result [3, 4, 5, 6],
proposed result [3, 4, 5, 6], correctness of the operation as

judged by the subject [correct or incorrect, including only the

accurate responses], and response side [left vs. right button

press, including only the accurate responses]. Note that for

the correct and proposed result we only included the trials in

which their values were [3, 4, 5, 6], since those were homo-

geneously distributed (15.62% of trials each, see Methods).

3.3. Operand 1

The classification accuracy for operand 1 became significantly

above chance starting at 112 msec after its onset, with a peak

at 152 msec, and lasted until 640 msec (p < .05, corrected for

multiple comparisons).

3.4. Operation type

The decoding scores for the operation became significantly

higher than chance at 880 msec (i.e., 95 msec after the onset

of the operation sign at 785 msec) with the peak at

928 msec, then dropping after the offset of sign, but

remaining above chance almost all the way though the

onset of the equal sign, and then transiently recovering

above-chance performance level after the onset of the equal

sign (p < .05, corrected).

3.5. Cross generalization from operation type to
operand 2

The high initial classification score of the operation is most

likely due to the visual difference between the plus andminus

signs, but could also reflect task-specific preparation, such as

operator priming (Fayol & Thevenot, 2012) as well as visual-

spatial mechanisms or spatialenumerical associations

(Hartmann, Mast, & Fischer, 2015; Masson & Pesenti, 2014;

Mathieu, Epinat-duclos, L�eone, Fayol, & Thevenot, 2017;

Mathieu, Gourjon, Couderc, Thevenot, & Prado, 2016). Indeed,

behavioral studies have shown that addition leads to a bias

towards large numbers, and subtraction a bias towards small

numbers (Knops, Viarouge, Dehaene, et al., 2009; Knops,

Thirion, et al., 2009; McCrink et al., 2007; Pinhas & Fischer,

2008), which could suggest that the neural codes for add/

subtract and for larger/smaller numbers overlap. To test this

hypothesis, we trained a logistic regression classifier to

https://doi.org/10.1016/j.cortex.2018.07.018
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decode subtractions vs. additions and tested if it could cross-

generalize to small vs. larger numbers for both operand 1 (in

which 3& 4 received the same label as subtraction and 5& 6 as

addition) and operand 2 (in which 0 & 1 received the small

label as subtraction and 2 & 3 as addition).

As can be seen in Fig. 3, cross-generalization from opera-

tion was only significant at the time of operand 2, but not for

operand 1 (even when using a more robust Riemannian ge-

ometry based model which integrates the temporal informa-

tion). Those results therefore suggest the existence of a

transient (~128e288 msec) common code between additions

and subtractions and larger and smaller operands 2,

respectively.

3.6. Operand 2

The decoding scores for operand 2 started to be significantly

above chance at 1,672 msec (i.e., 102 msec after its onset at

1,570 msec) with a peak at 1,776 msec, then dropping after the

its offset, but remaining above chance until 2,770 msec

(p < .05, corrected). Therefore, between the onset of operand 2

and the offset of the equal sign, both the operation (addition

vs. subtractions) and the operand 2 could be decoded simul-

taneously from the sameMEG data. Importantly, comparisons

showed that operand 2 was decodedwith higher classification

accuracy than operand 1 (between 0 and 400 msec: mean

operand 2 ¼ .31, SD ¼ .029; mean operand 1 ¼ .27, SD ¼ .016,

F(1, 19)¼ 67.706, p < .001; h2¼ .414 and between 400e800msec:

mean operand 2 ¼ .284, SD ¼ .018; mean operand 1 ¼ .26,

SD ¼ .012, F[1, 19) ¼ 41.776, p < .001; h2 ¼ .382], and for a longer

time period (see also Fig. A5). This observation suggests that

more intense brain activity occurred after operand 2 than after

operand 1, in agreement with the fact that, at this time, sub-

jects were able to start their calculation, a process whose

length depends on the size of themin operand (or the smallest

operand) (Groen & Parkman, 1972; Pinheiro-Chagas, Dotan,

et al., 2017; Uittenhove et al., 2016), which in the present

experiment is always operand 2. A potential confound that

could explain the higher decoding accuracy observed in

operand 2 is the presence of 0, since it has been proposed that

problems with 0 might engage a non-calculation rule-based

strategy (Ashcraft & Battaglia, 1978), therefore facilitating

their classification. We tested and refuted this possibility, by

excluding the 0s. Evenwith a smaller data set, the classifier for

operand 2 significantly outperformed the one for operand 1

[0e400 msec: F(1,19) ¼ 17.643, p < .001, h2 ¼ .146 and

400e800 msec: F(1,19) ¼ 18.410, p < .001, h2 ¼ .188)].

3.7. Proposed result

As expected, the proposed result was not decodable before its

appearance on screen. Similarly to operand 1, it was tran-

siently decoded starting from 92 msec, with a peak at

166 msec and remained above chance only until around its

offset (p < .05, corrected).

3.8. Correctness

The correctness of the trial judged by the subject was signifi-

cantly classified above chance from 172 msec after the onset
of the proposed result with a peak at 248 msec and remained

significant all the way until the end of the epoch (p < .05,

corrected). We did not observe any significant decoding score

for the absolute distance between proposed and correct result

(1e4), in line with the absence of a distance effect in RT.

Relative to the onset of the proposed result, the response side

started to be significantly classified above chance at 196msec,

with a peak at 484 msec, and this effect also lasted until the

end of the epoch (p < .05, corrected). Note that the classifiers

for response side and response correctness were orthogonal,

since the response buttons were switched in themiddle of the

experiment (see Methods). A better way to look at the rela-

tionship between the judgment of the correctness and the

response side, is to time-lock the epochs to the key press. This

analysis clearly showed a slow ramping of the classification

score for the correctness starting at �428 msec with a peak at

�100msec followed by a drop just before the response (p < .05,

corrected). On the other hand, the fast ramping of the classi-

fication score for the response side started at �212 msec and

sharply increased to almost perfect classification at around

24 msec before the button press.

3.9. Generalization across time

To investigate the dynamics of calculation, we conducted a

generalization across time decoding analyses (King &

Dehaene, 2014), which revealed that the features of operand

1, operation sign, and operand 2 were decodable when train

and test times were approximately the same (‘diagonal decod-

ing’ Fig. A1). This analysis therefore suggests that each of

these items launched a series of internal processes whose

underlying codes dynamically changed along the trial.

Nevertheless, the generalization-across-time matrix was

broader for operation sign and for operand 2, transiently

turning into a square pattern characteristic of sustained ac-

tivity (Fig. A1). Furthermore, while the operand 1 and the

proposed result were only transiently decoded during the time

window that the stimuli was visually present, the operation,

operand 2, correctness and response side had classification

scores above chance that lasted for a longer time window.

3.10. Representational similarity

The decoding analysis does not directly reveal the precise

stimulus dimensions that allowed the classifier to perform

above chance level. In particular, we wanted to further

investigate the representational geometries underlying the

responses evoked by the operands and the result. For that, we

turned to representational similarity analyses (RSA).

Several RSA models were constructed to test specific re-

lationships between different dimensions of the stimuli and

the MEG signals. The theoretical representational dissimi-

larity matrices (RDM) were constructed using the 32 additions

and subtraction problems,whichwe sorted by operand 1, then

by operation (additions first) and finally by operand 2: (3 þ 0,

3 þ 1, 3 þ 2, 3 þ 3, 3�0, 3�1, 3�2, 3�3, etc., see Fig. A2). Seven

theoretical RDM matrices were constructed, either based on

the magnitude dissimilarity (numerical distance) or visual

dissimilarity (using a method that captures the hypothetical

responses of inferior temporal cortex), separately for operand

https://doi.org/10.1016/j.cortex.2018.07.018
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1, operand 2, and the correct result, plus amatrix for category-

based similarity for addition vs. subtractions (see Fig. 4). Those

theoretical matrices were used as regressors on the observed

matrices derived from the MEG data, i.e., the dissimilarities

between the 32 averaged event-related MEG topographies.

Such regressions were conducted at each time step, thus

allowing us to visualize the time course of the corresponding

neural codes.

We first tested whether and when the visual and magni-

tude dimensions of the operands could be recovered from

MEG signals. As can be seen from Fig. 5, both the visual and

magnitude models of the operands had significant correla-

tions with the observed RDM following operand onset. Spe-

cifically, the visual model of operand 1 showed a significant

effect at 128msec after visual appearance of operand 1, with a

peak at 168 msec and lasting up to 544 msec (p < .05, corrected

for multiple comparisons). Around the same time, the

magnitude model for operand 1 had a smaller, but significant

effect, starting at 112msecwith a peak at 328msec and lasting

until 328 msec (p < .05, corrected). For operand 2 the pattern

was somehow inverted. The magnitude model had a stronger

effect which started at 1,664 msec (94 msec after the onset of

operand 2, which occurred at 1,570 msec). This effect peaked

at 1,704 msec and lasted until 2,608 msec (p < .05, corrected),

i.e., longer than the visual model (start ¼ 1,672 msec,

peak ¼ 1,808, lasting until 2,392 msec, p < .05, corrected).

Since the visual andmagnitudemodels partially correlated

with each other, we next investigated the unique variance

explained by eachmodel, while regressing out the effect of the

other model.

For operand 1, themagnitudemodel did not reach statistical

significance at any time point after regressing out the visual

model. Conversely, the visual model had two small significant

values at ~224 msec and ~544 msec after controlling for the

magnitude model (p < .05, corrected). In contrast, the magni-

tude model remained significant for operand 2 after regressing
Fig. 5 e Representational geometries of the operands. A series

temporal dynamics of the representation of operand 1 and ope

dissimilarity matrix were performed at each time sample. We fi

magnitude, lines 1 and 3). Next, to test the unique variance expla

model (visualemagnitude and magnitudeevisual; lines 2 and 4

Thick lines and filled areas represent time periods in which the

correlation coefficient significantly above 0 (cluster corrected fo
out the effect of the visual model from 1,672 to 2,360 msec

(p < .05, corrected). Conversely the visual model also remained

significant after controlling for the magnitude model, but for a

shorted period, from 1,696 to 2,103 msec (p < .05, corrected).

Overall, the RSA corroborates the decoding results, by

showing that the representational geometry can be better

retrieved from MEG signals for operand 2 compared to

operand 1. Crucially, the RSA revealed that both visual and

magnitude dimensions of the operands are coded at about the

same time. While the dominant dimension for operand 1 was

visual, both visual and magnitude dimensions could be inde-

pendently retrieved from operand 2, but with a predominance

of the magnitude dimension.

3.11. Inability to decode the internally computed result

We next searched the data for a representation of the

internally computed correct result (i.e., A þ B or A-B,

depending on the operation) (Fig. 6). The visual model had no

significant effect across the entire trial. The magnitude

model was transiently significant, but only right after the

presentation of the operation sign, that is, before the actual

calculation could have started. An additional estimator

using Ridge regression corroborated this finding (see Fig. A1).

This result was probably driven by the correlation between

the magnitude and the operation sign, since our experi-

mental design had additions and subtractions with matched

operands, thus additions produced overall higher results and

subtractions smaller results (see Methods). Confirming this

intuition, after regressing out the effect of the operation

model, the magnitude model did not explain any unique

variance, whereas conversely the effect of operator was

virtually unchanged when regressing out the magnitude

model of the result and it even showed a transient reac-

tivation after the presentation of the equal sign, similarly to

the decoding analysis (see Fig. 2).
of RSA models (see Fig. 4) were used to investigate the

rand 2. Correlations between the theoretical and observed

rst correlated the RSA for single predictors (visual and

ined by eachmodel, we partialled out the effect of the other

). Gray horizontal lines indicate theoretical chance level.

second-level statistical tests across subjects revealed a

r multiple comparison, p < .05).
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Fig. 6 e Attempting to decode the internally computed

result. We first correlated the RSA for single predictors of

the result (visual and magnitude, lines 1 and 2). Next, to

test the unique variance explained by each model, we

partialled out the effect of the operation (line 3) from the

magnitude model (line 4) and vice versa (line 5). Gray

horizontal lines indicate theoretical chance level. Thick

lines and filled areas represent time periods in which the

second-level statistical tests across subjects revealed a

correlation coefficient significantly above 0 (cluster

corrected for multiple comparison, p < .05).
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Because we were surprised at our inability to decode the

internal computed result, we performed several additional

analyses, but none were successful. Here we briefly describe

the rationale behind each strategy. First, we explored event

related fields (ERF) at the univariate level, using Fieldtrip

cluster-based method. Within the time window between

operand 2 and the equal sign, or between operand 2 and

proposed result (when subjects are supposedly performing

the exact calculation), the cluster-based permutation test did

not reveal any cluster with a significant correlation with the

correct result. We first did this analysis while grouping

together additions and subtractions, then replicated it while

analyzing them separately, and also within each group of MEG

sensors, to no avail.

As regards multivariate analyses, we first attempted to

predict whether the internally computed result was 3, 4, 5 or 6.

The rationale, as explained in the Methods section, was that

experimental design used additions and subtractions

matched by operands, thus imposing an inhomogeneity on

the distribution of results. Therefore, for the main decoding

analysis, we only used the most homogeneously distributed

results (numbers 3e6), which overall represented 62.48% of

the trials. As described earlier, this analysis did not result in

any significant decoding score. We reasoned that if the brain

signals associated with the computed results are weak, it

might be better to first train the decoder on an explicitly pre-

sented number using a large training set, and only test its

generalization to the internally computed result. This was

done by training themodel to decode the operand 1 during the
first 800 msec, and then testing its generalization to the

internally computed result. At no time point prior to the pre-

sentation of the correct result did we find any significant

cross-generalization classification score.

We also trained a classifier to decode the proposed result

(when it was correct) time-locked to the proposed result (for

800 msec) and tested if it could generalize backwards to the

correct result at the time window between the operand 2 and

the proposed result. Thismodel only included 30% of the trials

and learning was not above chance for decoding the proposed

result, therefore no generalization could be tested on the

internally computed result.

Another possibility is that the result is coded in the

spectral domain, perhaps within a specific frequency band.

To explore that, we used a searchlight approach in time,

sensor space and frequency [using the Matlab Cosmo MVPA

Toolbox (Oosterhof, Connolly, & Haxby, 2016)]. We fitted a

series of linear discriminant analysis (LDA) estimators

(instead of SVM, for computational simplicity) with our

standard cross-validation scheme to classify the

main variables of interest (operand 1, operation, operand 2

and result), with the following procedure. First, we selected

two frequency bands (low: 1e34 Hz and high: 34e100 Hz).

Next, we selected one sensor (only gradiometers) to be the

center of the “sphere” and included its 10 closest neighbor

sensors. The matrix of features was therefore composed

of single-trial MEG frequency power signals [X,

shape ¼ ntrials � (10sensors � 1time sample � 1frequencies)]. No sig-

nificant classifications scores were found in the high fre-

quencies. As can be seen in Fig. A4, the operand 1,

operation and operand 2 could be decoded generally from

occipital-parietal sensors, at a short time window following

their respective onsets and mostly between 3 and 20 Hz, a

frequency band which corresponds to event-related signals

and is a classical finding for visually presented stimuli (King

et al., 2016). However, no sign of above-chance classification

was found for the result in any group of sensors at the time

point between the operand 2 and the proposed result and in

any frequency.

Finally, we reasoned that, if the computation time varied

on a trial-by-trial basis, the brain response induced by the

internally computed result could be brief and diluted in time,

thus obscuring its decodability when the trials were time-

locked to operand onset. We tried to overcome this timing

issue by computing the Fourier spectrum of the low-pass

signal in the low frequency range (2e34 Hz) using the entire

time window from B to C, then feeding the classifier with a

feature matrix of single-trial MEG frequency power (X,

shape ¼ ntrials � n frequencies). The logic is that once phase in-

formation is removed, the Fourier spectrum is invariant for

temporal delays. No significant classification was found.

Additionally, we tested a classifier based on Riemannian ge-

ometry using a covariance matrix estimation that integrates

the temporal information (ERPCov, see Methods). This pipe-

line was applied to classify the operand 1, operation, operand

2 and result, in two time windows (0e800 msec and

800e1,600). Results are summarized in Fig. A5. As can be seen,

the ERPCov classifier boosted the classification accuracies for

operand 1, operation and operand 2 (especially in the

0e800 msec window), but yielded no significant classification

https://doi.org/10.1016/j.cortex.2018.07.018
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accuracy for the result. Therefore, we conclude that in the

current dataset, the internally computed result could not be

decoded from MEG signals.
4. Discussion

By combining time-resolved multivariate pattern analysis

(MVPA) to MEG signals, we obtained a comprehensive picture

of the unfolding processing stages underlying arithmetic cal-

culations. Our verification task, using sequentially presented

addition and subtraction problems, allowed us to investigate

the main components of mental arithmetic: encoding of the

operands, processing of the operation sign, calculation, deci-

sion of correctness, and finally response preparation and

execution. Overall Global Field Power (GFP) revealed that the

activity was sustained during the entire trial, with additional

transient peaks at ~150 msec after each stimulus. MEG to-

pographies showed that the evoked responses evolved across

time from posterior to anterior sensors, both after each

stimuli onset and also across the entire trial, which fits nicely

with previous electrophysiological findings on arithmetic

processing (Dehaene, 1996) and visual object processing in

general (Cichy et al., 2014; King et al., 2016; Sergent, Baillet, &

Dehaene, 2005).

4.1. A cascade of partially overlapping processing stages
in mental arithmetic

Crucially, we could decode a series of calculation features,

revealing a cascade of partially overlapping brain states

during the solution of a problem as simple as 3 þ 2 ¼ 5. First,

we could transiently decode the identity of the operand 1

between 112e640 msec after stimuli onset. Next, the opera-

tion (addition vs. subtraction) could be decoded from 95 msec

after the onset of the operation sign, dropping somewhat

700 msec after the sign, but remaining above chance until the

offset of operand 2, with a subsequent transient recovery

after the onset of the equal sign (significant decoding for

~2,000 msec). The high initial classification score is most

likely due to the visual difference between the operation

signs, but could also reflect task-specific preparation, such as

operator priming (Fayol & Thevenot, 2012) as well as visual-

spatial mechanisms or spatialenumerical associations

(Hartmann et al., 2015; Masson & Pesenti, 2014; Mathieu et al.,

2017, 2016), as would follow from the idea that calculation is

essentially a movement along the mental number line

(Knops, Thirion, et al., 2009; Knops, Viarouge, & Dehaene,

2009; Pinheiro-Chagas, Dotan, et al., 2017). In line with this

hypothesis, we found that a classifier trained on discrimi-

nating subtractions vs. additions cross-generalized and

accurately discriminated smaller vs. larger numbers, respec-

tively, but only at the time of presentation of operand 2,

which is probably the stage in which subjects are calculating

or manipulating quantities. In fact, the identity of the

operand 2 could be decoded for an extended time window,

ranging from 102 msec after stimulus onset till the offset of

the equal sign, thus partially overlapping with the decoding

of operation for about 1,000 msec. This results fits with our

recent behavioral findings that the operator sign transiently
affected the decision about the location of the result of

arithmetic calculations on a number line [a plus sign attrac-

ted the finger to the right (larger results) and a minus sign to

the left (smaller results)] around the time that subjects were

processing operand 2 (Pinheiro-Chagas, Dotan, et al., 2017).

The existence of a code that is partially common across the

elaboration of an arithmetical sign and a number also comes

from behavioral data showing that both stimuli (an arith-

metical sign and a number) trigger shifts in spatial attention

that are consistent with a left-to-right oriented representa-

tion, thus facilitating target detection (Fischer, Castel, Dodd,

& Pratt, 2003; Mathieu et al., 2016). Nevertheless, our cross-

generalization result alone could also be explained by the

fact that subtractions normally produce smaller numbers

than additions, without postulating the existence of a

spatially organized mental number line.

Importantly, operand 2 was classified with a higher accu-

racy as compared to operand 1 (Fig. 2 and Fig. A5), suggesting

that more intense and more stable brain activity occurred

after operand 2 than after operand 1. This is understandable

given that, at this stage subjects were able to start calculating,

a process whose duration depends on the size of the min

operand (or the smallest operand) (Groen & Parkman, 1972;

Pinheiro-Chagas, Dotan, et al., 2017; Uittenhove et al., 2016),

which in the present experiment is precisely operand 2. These

results also fit with recent neurophysiological findings. An

ECoG study using an essentially identical verification task

(Hermes et al., 2015) showed that neuronal populations in the

ventral temporal cortex (VTC) have stronger activity following

operand 2 as compared to operand 1, with an averaged time

course very similar to our Fig. 1B. This finding was interpreted

as suggesting that the VTC activity is modulated by task de-

mands, in this case the actual manipulation of numbers,

which can only happen after operand 2 (Hermes et al., 2015). A

more recent ECoG study revealed that in addition to the

number form area (NFA) in the ventral temporal cortex (VTC),

which selectively responds to numerical digits independently

of the presentation context (Shum et al., 2013, for reviews see;

Hannagan, Amedi, Cohen, Dehaene-Lambertz, & Dehaene,

2015; Price, Yeo, Wilkey, & Cutting, 2016), there are neuronal

populations in the posterior inferior temporal gyrus (pITG)

(just adjacent to the NFA), that respond slightly later

(~10 msec) and exhibit more sustained activity than the NFA.

Crucially, these lateral sites respond only when numerals are

presented in the context of a calculation or, in the case of the

sequentially presented verification task, only for operand 2

and the proposed result, but not for operand 1 (Daitch et al.,

2016). Thus, these results provide a plausible psychophysio-

logical basis for our finding that operand 2 can be decoded

with a higher accuracy as compared to operand 1.

Although it was not the aim of our paper to arbitrate be-

tween different cognitive models of mental arithmetic, our

results impose some restrictions to fact-retrieval models

(Ashcraft, 1982; Campbell, 1995). These models assume that

single-digit additions and subtractions are solved by directly

retrieving the result from a long-termmemory representation

of arithmetic facts, without relying on any calculation, pro-

cedure or quantity manipulation. Therefore, they do not pro-

vide any prediction or explanation for the higher accuracy in

decoding the operand 2, nor for the cross-generalization from

https://doi.org/10.1016/j.cortex.2018.07.018
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subtractions vs. additions to smaller vs. larger numbers.

Conversely, these results can easily be accommodated by a

models that postulates that single-digit additions and sub-

tractions are computed by a stepwise displacement on a

spatially organized mental number line (Knops, Viarouge,

et al., 2009; Uittenhove et al., 2016), starting with the larger

number and incrementally adding or subtracting the smaller

number (Pinheiro-Chagas, Dotan, et al., 2017).

4.2. The representational geometries of the operands

Although those ECoG studies were very informative about the

fine-grained spatialetemporal dynamics of calculations, they

did not provide any direct indication about the nature of the

underlying representations of the operands. Here, to investi-

gate this question, we applied time-resolved representational

similarity analysis (RSA). Our results indicated that while for

operand 1 the dominant dimension represented was visual,

for operand 2 both visual and magnitude dimensions

explained unique variance in the MEG signal. A similar

conclusion, corroborating this finding, could be drawn from

the results of the multivariate regression analysis (Fig. A3), in

which only the estimator for operand 2 achieved above

chance performance. Although a natural prediction for

operand 2 would be that the visual dimension precedes and

partially overlaps with the magnitude dimension, we

observed an effect of the two dimensions starting practically

at the same time, at ~100 msec after stimuli onset, but the

magnitude dimension was predominant and lasted longer

(Fig. 2). As ECoG suggested that the difference in latency be-

tweenNFA and both pITG and IPS is very small (~14msec), it is

possible that we did not have a high enough signal-to-noise

ratio to separate in time the visual and magnitude di-

mensions with MEG. Further ECoG studies specially designed

for this purpose could provide a definitive answer. It is also

important to note that in our experiment, the magnitude of

the operand 2 defines the problem-size, the size of the min

operand that needs to be added or subtracted, and which is

known to be a major determinant of calculation duration and

difficulty (Groen & Parkman, 1972; Pinheiro-Chagas, Dotan,

et al., 2017). Therefore, the decoding of operand 2 and its

correlation with the magnitude model of the RSA could be a

combination of the quantity representation and the calcula-

tion process itself. Future experiments should aim at disen-

tangling these two processes.

4.3. Parsing the processing stages of arithmetic decision-
making

At the decision stage (Fig. 2, time-locked to C), we found a fast

and highly overlapping dynamics of identifying the proposed

result (from 92 till 400msec), judgingwhether it was correct or

incorrect (from 172 msec till the end of the trial) and finally

pressing the response button (from 196msec till the end of the

trial). The last two stages were better observed when time-

locking the signal to the RT. We could see a slow ramping in

the decoding of the correctness starting at �428 msec before

the RT and persisting until the end of the trial, followed by a

fast and sharp increase of classification score for the response

button at �212 msec before the RT (Fig. 2). It is important to
highlight that those three features (proposed result, correct-

ness and response button) are orthogonal to each other in our

experimental design, so the classifiers could no rely on a

single feature to perform above chance level.

The proposed result was transiently decoded after its

onset, but we did not observe a distance effect for the incor-

rect trials (absolute distances ¼ 1e4) in both behavioral and

electrophysiological levels (no significant decoding scores),

which is at odds with previous positive findings (Avancini,

Galfano, & Szucs, 2014; Avancini et al., 2015; Dehaene, 1996).

We believe that this null finding was probably due to a com-

bination of the small distances used (1e4), and the slow pace

of our experimental design. As a result, subjects probably had

the correct result inmind for at least 1 sec before the proposed

result appeared, and could perform a fast symbolic same-

different judgement without showing any influence of nu-

merical distance.

4.4. Temporal dynamics of the decoding patterns

The decoding patterns of the calculation features observed

in this experiment are far from trivial and deserve attentive

consideration. Due to the sequential structure of our task, a

series of informations had to be maintained in working

memory. For example, to correctly perform the task, subjects

needed to keep in mind the operand 1 at least until the

operand 2 was presented. Yet, surprisingly, the classification

score for operand 1 rapidly decreased to chance level after

stimulus offset and remained so until the end of the trial. A

similar result was observed in a series of working memory

studies in which the information could not be decoded in a

sustained way during the memory maintenance period,

suggesting that, contrary to previous suggestions, working

memory may not be encoded by a stable pattern of sustained

activity (LaRocque, Lewis-Peacock, Drysdale, Oberauer, &

Postle, 2013; Sprague, Ester, & Serences, 2016; Trübutschek

et al., 2017; Wolff et al., 2017). A slightly different decoding

time course was observed for the operation and operand 2:

both features remained decodable for a much longer time

(above 1,000 msec), although again with a drastic drop in

accuracy after 800 msec. Finally, remember that we could

not decode the internally generated result, even though

subjects were instructed to compute it and keeping it “in

mind” during the delay prior to the appearance of the pro-

posed result.

Several theories may explain either the complete absence

of decodable sustained activity, or the strong decrease in the

decoding performance, during the various delay periods of our

arithmetic task. First, instead of stable sustained neural firing,

information might be maintained in working memory

through occasional gamma and beta bursts (Lundqvist et al.,

2016) which would therefore be diluted in time and which

our MEG signals might not be sensitive enough to capture.

Second, the coding scheme to store information in working

memory may not be through persistent neuronal firing, but

through short-term synaptic changes (Mongillo, Barak, &

Tsodyks, 2008), so called ‘silent states’ (Stokes, 2015;

Trübutschek et al., 2017) and therefore may not be directly

measurable with conventional neuroimaging methods.

Finally, a third possibility is that the neural coding schemes

https://doi.org/10.1016/j.cortex.2018.07.018
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changes across successive stages from an easily decodable

spatial code based on large cortical columns in posterior

areas, to amoremicroscopic and sparse code in the prefrontal

cortex and other associated areas, based on overlapping

neural populations and orthogonal vectors (Mante, Sussillo,

Shenoy, & Newsome, 2013), which may therefore not be

detectable with MEG. All three possibilities are plausible, and

fine-grained electrophysiological recordings will be needed to

separate them.

The temporal generalization analysis (King & Dehaene,

2014) revealed that the underlying codes of the main calcu-

lation features are highly dynamic along the trial, as indicated

by a diagonal generalization-across-timematrix showing that

they remained decodable only when train and test time were

similar (Fig. A1). The sole exception was around 200e400msec

after the presentation of the operation sign and operand 2,

where a thicker diagonal, closer to a square pattern of

generalization, suggested a more stable neural code. Such a

succession of diagonal and then square pattern has been

systematically observed in several studies (Crouzet, Busch, &

Ohla, 2015; King et al., 2016; Marti, King, & Dehaene, 2015;

Stokes, Wolff, & Spaak, 2015; Trübutschek et al., 2017) and

has been interpreted (King et al., 2016; Trübutschek et al.,

2017) as compatible with classical cascade models

(McClelland, 1979), suggesting that information is encoded by

an initial cascade of successive neural codes, followed by a

more sustained (though still transient) activity during later

decision or working-memory stages. It also corroborates a

series of functional and anatomical findings on the highly

hierarchical organization of the cortex (Chaudhuri,

Knoblauch, Gariel, Kennedy, & Wang, 2015; Cichy & Teng,

2016; Felleman & Van Essen, 1991; King et al., 2016;

Rajalingham, Schmidt, & DiCarlo, 2015). Because of the se-

ries of mental transformation involved in our task, some of

the features could be discarded along the way and substituted

by their transformed or combined version. For example, the

operands probably underwent a series of visual processing

stages before their symbolic identity was established. Simi-

larly, during calculation, operand 1, operand 2 and the oper-

ation sign were probably transformed into an internal

representation of the computed result after the presentation

of operand 2, and from this stage on, the task required only

that result to be maintained in working memory for later

comparison with the proposed result.

4.5. The search for the neural correlates of the internally
computed result

With this idea in mind, we systematically searched for a

neural signature of this internally computed result. Surpris-

ingly, however, none of our attempts were successful. Could

this finding arise from limitations in our experimental design?

One potential weak point is that our task did not allow to

establish the precise moment when the calculation was

completed, which probably varied on a trial-by-trial basis. Our

hypothesis, however, was that the activity induced or evoked

by the correct result would last until the proposed result

appeared, so that we would decode it without necessarily

time-locking the signal to the peak of activation generated by

the correct result. For instance, although RT systematically
varies across trials, we did not need to time lock the response

button press to RT to achieve above-chance classification

score when decoding the response side (Fig. 2). This strategy

did not work, however, for the internally computed result. To

overcome this potential timing limitation, we tried some

decoding models which received as input the induced oscil-

latory activity in a wide frequency range and one model that

used Riemannian geometry (Barachant & Congedo, 2014) and

embeds the temporal information of the signal by concate-

nating along the sensor axis the averaged ERF (across trial) of

each class, and is therefore well suited to capture both evoked

and induced responses. Although the latter estimator indeed

boosted decoding scores for the other calculation features of

interest (operand 1, operation and operand 2), it showed no

improvement to decode the correct result.

After testing several robust state-of-the-art decoding

models, we therefore conclude that the internally computed

result of a simple arithmetic calculation is not as easily

decodable from MEG signals as the externally presented

stimuli. This finding could originate from the same three ex-

planations listed above to account for the vanishing of the

codes for operand 1 and 2: brief bursts of gamma or beta ac-

tivity; short-term synaptic codes; or overlapping neural mi-

crocodes. Follow-up studies could try to use a larger number

of trials to train the classifiers.

Additionally, it is also possible that, since we used a veri-

fication task, subjects did not need to calculate in every trial.

They could use a range of rule-based strategies, such as

comparing the parity and size between the operands and the

proposed result. However, subjects were explicitly asked to

calculate in order to judge as fast as possible the correctness of

the proposed result. Moreover, a series of findings indicate

that they did indeed engage in calculation. First, we could

decode the additions vs. subtractions ~2,000 msec after the

onset of the operation sign, overlapping with the decoding of

the operand 2 for about 1,000 msec. Second, we found higher

classification accuracies for decoding the operand 2 vs.

operand 1, and the magnitude model in the RSA was domi-

nant for predicting operand 2. These results suggest that the

actual calculation process was initiated after the onset of

operand 2 and lasted until the offset of the equal sign (around

1,200msec), when both operation type and operand 2 could no

longer be decoded.

Finally, it is possible that subjects were purely retrieving

the result of the problems from long-term memory, as sug-

gested by fact-retrieval models (Ashcraft, 1982; Campbell,

1995). But even in this case, we would still expect to be able

to decode the correct result, since it had to be internally

generated andmaintained inworkingmemory somehow to be

compared with the proposed result.

MEG decoding has been successfully applied to charac-

terize the spatialetemporal dynamics of several cognitive

functions, such dual-task interference (Marti et al., 2015),

attention (Brandman & Peelen, 2017; Kaiser, Azzalini, &

Peelen, 2016), working memory (King et al., 2016;

Trübutschek et al., 2017; Wolff et al., 2017), reward value

(Bach, Symmonds, Barnes, & Dolan, 2017), taste perception

(Crouzet et al., 2015), object recognition and categorization

(Carlson et al., 2013, 2011; Cichy et al., 2014; Isik et al., 2014),

written and spoken language (Chan, Halgren, Marinkovic, &
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Cash, 2011; Kocagoncu, Clarke, Devereux, & Tyler, 2017), etc.

However, virtually all of these studies either used classifiers

that could rely on activity evoked by low-level sensory prop-

erties of the stimuli (or mental imagery), or probed classical

semantic categories that are known to be anatomically

segregated. Therefore, evidence for within category time-

resolved decoding at the single-trial level of abstract inter-

nally generated mental objects is still lacking. One reason

might be that such mental objects, like the result of a calcu-

lation, are represented in a highly distributed fashion, difficult

to measure with non-invasive methods that have a relatively

low signal-to-noise ratio, therefore suggesting the existence of

different neural substrates for externally and internally

generated codes.
5. Conclusion

Despite its inability to decode the internally computed

result, the present study provides a first picture of the se-

ries of successive processing stages and mental trans-

formations that unfold during a simple arithmetic

calculation. The results reveal a highly dynamic coding

profile and a cascade of partially overlapping brain states

during elementary arithmetic, therefore increasing our

understanding of the neurocognitive underpinnings of high

level symbolic cognition.

Acknowledgments

This research was sponsored by INSERM, CEA, and the Bet-

tencourt-Schueller Foundation, France. S. Dehaene is sup-

ported by an advanced grant “NeuroSyntax” from the

European Research Council (ERC), European Union. Pedro

Pinheiro-Chagas gratefully acknowledges a Science Without

Borders Fellowship from the Brazilian National Council for

Scientific and Technological Development (CNPq, Brazil) (nr.

246750/2012-0). We are grateful to all subjects who partici-

pated in the study and to Veronique Joly-Testault, Laurence

Laurier and all the NeuroSpin team who helped recruiting

them. We would also like to thank Valentina Borghesani,

Marco Buiatti and Darinka Trübutschek for methodological
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